
Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

TreeLine: An Update-In-Place
Key-Value Store for Modern Storage

Geoffrey X. Yu*, Markos Markakis*,
Andreas Kipf*, Per-Åke Larson,
Umar Farooq Minhas, Tim Kraska

Photo by Richard Main on Unsplash

1August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

The Motivation
Key-value stores? Skew? Modern SSDs?

The Motivation

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 2

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

KVSs abound, but not all keys are created equal
• Varying hotness
• Hotness independent

of key
• Frequently-updated

and frequently-read
keys not necessarily
the same.

• Updates >> Inserts
• How to handle such a

workload efficiently?

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 3

Configurations

Profile metadata

User preferences

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

LSM-tree designs optimize for writes
• Common: Log-Structured Merge (LSM) tree.

• Basic principles:
• Buffer writes.
• Write to disk when full.
• Periodically “compact” logarithmically.
• Read from memtables or cache; fresher

versions are in lower-numbered levels.

• ✓ Efficient writes: dump new values into
memtable and flush periodically.

• ✘ Slow reads and high memory use: multiple
possible locations for each key.

In memory
On disk

Block Cache

Memtable

L1 L1

L2

L0 L0 L0 L0

MemtableImmutable Memtable

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 4

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Update-in-place designs optimize for reads

August 31, 2023 5TreeLine: An Update-In-Place Key-Value Store for Modern Storage

• Update-in-place: Classic B+ trees

•✓ Efficient reads: one physical
location per key.

•✘ Writes need random I/O: much
worse than sequential writes in HDDs.

• LSMs more widely used due to this
random I/O trade-off.

In-memory
Index

In memory
On disk

Request

Indexed pages

Pg
 5

Pg
 6

Pg
 1

Pg
 2

Pg
 4

Pg
 7

Pg
 8

Page Cache (Buffer Pool)

Evict once cold

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

The storage landscape has evolved!
• NVMe SSDs: Random write

throughput ≈ sequential write
throughput at high parallelism

• Sequential reads still better than
random reads.
• Speculative pre-fetching.
• Larger random reads

comparatively better.

Sequential
writes

Random
writes

Sequential
reads

Random
reads

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 6

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Can we bridge the two design extremes?

August 31, 2023 7TreeLine: An Update-In-Place Key-Value Store for Modern Storage

In memory
On disk

Block Cache

Memtable

L1 L1

L2

L0 L0 L0 L0

MemtableImmutable Memtable

?

This work: Can we make update-in-place designs competitive
against LSMs on writes, while still excelling at reads?

In-memory
Index

In memory
On disk

Request

Indexed pages

Pg
 5

Pg
 6

Pg
 1

Pg
 2

Pg
 4

Pg
 7

Pg
 8

Page Cache (Buffer Pool)

Evict once cold

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

The Innovation
How to make an update-in-place design workable

The Motivation
The Innovation

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 8

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

For skewed point requests, cache records
• Point reads and updates hit cache first.
• LSMs and classic B+ Trees use block

(page) caches.
• One hot record in each page?

• Key Idea A: use instead a record cache.
• Lower memory amplification.
• Higher I/O amplification (need to write

out pages)
• Balance in our favor.

Key Idea A: Record Caching

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 9

In memory
On disk

Request

Indexed pages

Pg
 5

Pg
 6

Pg
 1

Pg
 2

Pg
 4

Pg
 7

Pg
 8

Evict once cold

Record Cache A

In-memory
Index

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

For scans, group pages into segments
Key Idea B: Page Grouping

• Larger random reads are faster.

• Key Idea B: Page grouping.
• Co-locate pages, forming segments.
• For scans, read the entire segment.
• Navigate within segment using linear

models.

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 10

Sequential
reads

Random
reads

Indexed segments

Pg
 5

Pg
 6

Pg
 1

Pg
 2

Pg
 4

Linear Model

Pg
 7

Pg
 8

Lin. Mdl
B

…

In memory
On disk

Request

Evict once cold

Record Cache A

In-memory
Index

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

For inserts, leave space intelligently
Key Idea C: Insert Forecasting

• One page for a record – what if full?

• How much space to leave?
• Too much: Bad I/O amplification.
• Too little: Must reorganize often.

• Key Idea C: Insert Forecasting.
• Predict inserts using recent sample.
• On reorganization, leave empty space

based on estimate.
• Make limited use of overflow pages to

reduce reorganization frequency.

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 11

In memory
On disk

Segment Reorganizer

Insert ForecasterC

Indexed segments

Pg
 5

Pg
 6

Pg
 1

Pg
 2

Pg
 4

Overflow

Pg
 9

Pg
 1

0

Linear Model

Pg
 7

Pg
 8

Lin. Mdl
B

…

Request

Evict once cold

Record Cache A

In-memory
Index

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

The Evaluation
So, how well does this work?

The Motivation
The Innovation
The Evaluation

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 12

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Experimental setup
• Hardware:

• 20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory
• 1 TB Intel DC P4510 NVMe SSD

• Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)
• Amazon reviews dataset (33 million keys), 33% fits in memory
• Zipfian and uniformly distributed requests

• Baselines:
• RocksDB (LSM)
• LeanStore (Update-in-place)

• Metrics:
• Request throughput
• Physical I/O

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 13

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

TreeLine shines across the board
• Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
• Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
• Up to 10.95x and 7.52x over RocksDB, LeanStore overall

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 14

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Physical I/O and caching drive our wins

August 31, 2023 15TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Read much less from disk:
no need to access multiple levels or
compact them

Read much less from disk:

physical read throughput is lower
(random I/O) but less data to read.

…on point workloads …on scan workloads

Against RocksDB...

Against LeanStore… Better cache utilization:
cache hot records instead of
entire pages

Larger reads, better physical throughput:
page grouping allows for larger physical
reads in TreeLine.

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

• Record caching and page grouping work in tandem:
• For point workloads (A-D, F), record caching provides most of the benefit.
• For scan-heavy workload E, page grouping doubles the throughput.

• Insert forecasting boosts throughput by reducing reorganizations
• 64B case: Closes more than half of the gap to perfect.
• 512B case: Not enough granularity on 4KiB page.

August 31, 2023 16TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Our key ideas are complementary

50% Insert / 50% Read
on NYC Taxi Dataset

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

More details in the paper
• Implementation details

• Concurrency control
• Durability & recovery

• Additional experiments
• Page grouping effectiveness
• Insert forecasting epoch length

• Discussion
• Possible extensions
• Workload forecasting

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 17

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Key Takeaways
• NVMe SSDs: Parallel random writes ≈ sequential write performance

• Opportunity to revisit KVS design

• TreeLine: Update-in-place with three key ideas
• Record caching: Efficient memory use for skewed read/write workloads
• Page grouping: Large physical reads for scans, single-page reads for point lookups
• Insert forecasting: Proactively "leave space" for inserts

• Key results (YCSB throughput)
• Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
• Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
• Up to 10.95x and 7.52x over RocksDB, LeanStore overall

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 18

	Slide Number 1
	The Motivation
	KVSs abound, but not all keys are created equal
	LSM-tree designs optimize for writes
	Update-in-place designs optimize for reads
	The storage landscape has evolved!
	Can we bridge the two design extremes?
	The Innovation
	For skewed point requests, cache records
	For scans, group pages into segments
	For inserts, leave space intelligently
	The Evaluation
	Experimental setup
	Slide Number 14
	Physical I/O and caching drive our wins
	Our key ideas are complementary
	More details in the paper
	Key Takeaways

