TreeLine: An Update-In-Place
Key-Value Store for Modern Storage

Geoffrey X. Yu*, Markos Markakis*,
Andreas Kipf*, Per-Ake Larson,
Umar Farooq Minhas, Tim Kraska

MIT

g Y DSAIL

Data Systems and Al Lab

Photo by Richard Main on Unsplash

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




The Motivation

The Motivation

Key-value stores? Skew? Modern SSDs?

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




KVSs abound, but not all keys are created equal

C f. t i
Home > AppConfigContoso | Configuration explorer

LLLLL

bbbbb

HHHHHH

eeeeee

mMitpics #  Message 2

2,347 posts 471K followers 720 following
I | 8|
MIT
U
The official account of the Massachusetts Institute of Technology, a world leader in
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

linktr.ee/mitpics

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage

Varying hotness

Hotness independent
of key

Frequently-updated
and frequently-read
keys not necessarily
the same.

Updates >> Inserts

How to handle such a
workload efficiently?

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper




LSM-tree designs optimize for writes

* Common: Log-Structured Merge (LSM) tree.

On disk * Basic principles:

* Buffer writes.
* Write to disk when full.
* Periodically “compact” logarithmically.

Immutable Memtable Memtable

Block Cache

L1

* Read from memtables or cache; fresher
0 versions are in lower-numbered levels.

11 - V Efficient writes: dump new values into
memtable and flush periodically.

2

|

* X Slow reads and high memory use: multiple
possible locations for each key.

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




Update-in-place designs optimize for reads

Update-in-place: Classic B+ trees

v Efficient reads: one physical
location per key.

X Writes need random 1/0: much
worse than sequential writes in HDDs.

LSMs more widely used due to this
random |/O trade-off.

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage



The storage landscape has evolved!

Sequential
writes

y NVMe SSDs: Random write

glooo\_g ................ v }ﬁ throughput - sequential write

é; 500- ; =ik || fandom throughput at high parallelism

o == 16 KiB

B I To Sequential reads still better than
Sequentia random reads.

— J Speculative pre-fetching.

= 5000] Larger random reads

%IOOOL.*/I/" = }'W comparatively better.

. 013 4 T 16 rR:anddsom

Threads

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage



Can we bridge the two designh extremes?

In memory
Immutable Memtable Memtable

Block Cache ?

LO

I

0 Lo Lo

Indexed pages

L1 — o < wn (=} [ o0
oo oo oo oo oo oo oo
o o o o o (=% o

—
(=Y

—
|

This work: Can we make update-in-place designs competitive
against LSMs on writes, while still excelling at reads?

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage



The Motivation
The Innovation

The Innovation

How to make an update-in-place design workable

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




Key Idea A: Record Caching
For skewed point requests, cache records

Point reads and updates hit cache first.

LSMs and classic B+ Trees use block
(page) caches.

One hot record in each page?

Key Idea A: use instead a record cache.
Lower memory amplification.

Higher I/O amplification (need to write
out pages)
Balance in our favor.

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage



Key Idea B: Page Grouping
For scans, group pages into segments

Larger random reads are faster.

Key Idea B: Page grouping.
Co-locate pages, forming segments. "
For scans, read the entire segment.

Navigate within segment using linear
models.
Sequential
reads
A J Uincar Mk Indexed segments
iélOOO- — }qw
g jdﬁ —e
o 12 4 8 16 Random
Threads reads

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage



Key Idea C: Insert Forecasting

For inserts, leave space intelligently

One page for a record — what if full?

How much space to leave?
Too much: Bad 1I/0O amplification.
Too little: Must reorganize often.

Key Idea C: Insert Forecasting.
Predict inserts using recent sample.

On reorganization, leave empty space
based on estimate.

Make limited use of overflow pages to
reduce reorganization frequency.

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage

Request

Linear Model Indexed segments Cm Overflow
B

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper




The Motivation
The Innovation
The Evaluation

The Evaluation

So, how well does this work?

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




Experimental setup

Hardware:
20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory
1 TB Intel DC P4510 NVMe SSD

i U—]
Workload: Yahoo! Cloud Serving Benchmark suite (YCSB) TEL 3D NAND SS!
Amazon reviews dataset (33 million keys), 33% fits in memory
Zipfian and uniformly distributed requests

Baselines:
RocksDB (LSM)
LeanStore (Update-in-place)

Metrics:

Request throughput .;S":’."‘ ROC kSDB y |€C| ﬂSJ[Ore

Physical I/O

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




eq/s)

1500 Treeline 1500 . 15004 1500 . 15001
X RocksDB
< 1000 LeanShore 1000 1000 1000 1000
% 500 500 500 500 500
g O | . - U .__ .. O _- - O __ -. 0 L . J
= 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Threads Threads Threads Threads Threads
(a) A (64 B) (b) B (64 B) (c) C (64 B) (d) D (64 B) (e) F (64 B)
51500 15001 . "1500'. 1500 . 1500
21000 1000 1000 1000 1000
;g 500 500 500 500 500
£
= ° ° 16
Treeline shines across the board
* Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
¢ ..4 © Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
= * Up to 10.95x and 7.52x over RocksDB, LeanStore overall
2 50
é_:’!
= o L= . . 0 . . | 0 0 - . . L - . L =
= 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16
Threads Threads Threads Threads Threads Threads

(a) Amazon 64 B (U) (b) OSM 64 B (U) (c) Synthetic 64 B (U) (d) Amazon 1024 B (U) (e) OSM 1024 B (U) (f) Synthetic 1024 B (U)
@ ' ' 157 157 157
100 100 100
= 10 10 10
2 50 50 501
= 5 51 5
3
E O | O 3 .- .. 0 A ..- - 0 ...._ . O .__ J 0 1 ..
F 12 4 8 16 124 8 16 12 4 8 16 12 4 8 16 12 4 8 16 12 4 8 16

Threads Threads Threads Threads Threads Threads
(g) Amazon 64 B (Z) (h) OSM 64 B (Z) (i) Synthetic 64 B (Z) (j) Amazon 1024 B (Z) (k) OSM 1024 B (Z) (1) Synthetic 1024 B (Z)

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




Physical I/O and caching drive our wins

...on point workloads

...on scan workloads

Against RocksDB... Read much less from disk:

no need to access multiple levels or
compact them

Read much less from disk:

physical read throughput is lower
(random 1/0) but less data to read.

Against LeanStore... Better cache utilization:

cache hot records instead of
entire pages

August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Larger reads, better physical throughput:

page grouping allows for larger physical
reads in TreelLine.

Code: github.com/mitdbg/treeline

. . 15
Paper: tinyurl.com/treeline-paper



Our key ideas are complementary

No Optimizations
I + Record Caching
B + Page Grouping

1500 { 151

Throughput (krequests/s)
Throughput (krequests/s)

1000 10
500 51
0- 0-

A B C D F E

120

Throughput (kreq/s)

Record caching and page grouping work in tandem:
For point workloads (A-D, F), record caching provides most of the benefit.

For scan-heavy workload E, page grouping doubles the throughput.

=
o
o

80
60
40
20-

64 B

No Forecasting
Bl Forecasting
B Perfect

50% Insert / 50% Read
on NYC Taxi Dataset

512 B

Insert forecasting boosts throughput by reducing reorganizations
64B case: Closes more than half of the gap to perfect.

August 31, 2023

512B case: Not enough granularity on 4KiB page.

TreelLine: An Update-In-Place Key-Value Store for Modern Storage

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper



More details in the paper

Implementation details
Concurrency control
Durability & recovery

Additional experiments
Page grouping effectiveness
Insert forecasting epoch length

Discussion
Possible extensions
Workload forecasting

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage

TreeLine: An Update-In-Place Key-Value Store for Modern Storage

Geoffrey X. Yu" Markos Markakis* Andreas Kipf *
h Institute of Technol h Institute of Technol Institute of
geoffxy@mit.edu markakis@mit.edu Kipf@mit.edu
Per-Ake Larson Umar Farooq Minhas’ Tim Kraska
University of Waterloo Apple Massachusetts Institute of Technology
com i com kraska@mit.edu
ABSTRACT ‘Writes are first buffered in memory, and then eventually flushed to

Many modern key-value stores, such as RocksDB, rely on log-
structured merge trees (LSMs). Originally designed for spinning
disks, LSMs optimize for write performance by only making se-
quential writes. But this optimization comes at the cost of reads:
LSMs must rely on expensive compaction jobs and Bloom filters—
all to maintain reasonable read performance. For NVMe SSDs, we
argue that trading off read performance for write performance is
no longer always needed. With enough parallelism, NVMe SSDs
have comparable random and sequential access performance. This
change makes update-in-place designs, which provid
excellent read performance, a viable alternative to LSMs.

In this paper, we close the gap between log-structured and
update-in-place designs on modern SSDs with the help of new
components that take advantage of data and workload patterns.
Specifically, we explore three key ideas: (A) record caching for ef-
ficient point operations, (B) page grouping for high-performance
range scans, and (C) insert forecasting to reduce the reorganiza-
tion costs of accommodating new records. We evaluate these ideas
by implementing them in a prototype update-in-place key-value
store called TreeLine. On YCSB, we find that TreeLine outperforms
RocksDB and LeanStore by 2.20x and 2.07x respectively on average
across the point workloads, and by up to 10.95x and 7.52x overall.

PVLDB Reference Format:
Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Ake Larson, Umar
Farooq Minhas, and Tim Kraska. TreeLine: An Update-In-Place Key-Value
Store for Modern Storage. PVLDB, 16(1): 99 - 112, 2022.
0i:10.14778/3561261.3561270

PVLDB Artifact Availability:
‘The source code, data, and/or other artifacts have been made available at
hitps://github.com/mitdbgtreeline.

1 INTRODUCTION

Modern persistent key-value stores, such as RocksDB (48] and
LevelDB [27], are typically built using log-structured merge trees
(LSMs) [53]. The key idea behind LSMs is buffered log structuring.

“The first three authors contributed equally to this paper.
#Work done while at Microsoft Research.

“This work is licensed under the Creative Commons BY-NC-ND 40 International
License. Vit https:/creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this | For any sion by

by this license,
bt is held
licensed to the VLDB Endowment.
Proceedings of the VLDB Endownent, Vol. 16, No. 1 ISSN 2150-5097.

doi:10.14778/3561261.3561270

Code:

immutable files on disk. These files are then periodically compacted
(i.e., merged) in the background to remove overwritten and deleted
records. LSMs are popular because they provide stellar write per-
formance. They ensure that all disk writes are sequential, which
exploits the high sequential write bandwidth of traditional disks.

Yet despite these benefits, LSMs are not a silver bullet in key-
value store design. While their design makes writes efficient, it
comes at the cost of reads, since records can be present in multiple
locations on disk. This is why systems like RocksDB and LevelDB
employ block caches, Bloom filters [7, 22), and various compaction
strategies [9, 19, 50]—complex and hard-to-tune [47) techniques all
aimed at reducing the /O overhead of reads. For traditional disks
(e.g. HDDs and SATA SSDs), this write versus read performance
trade-off has been the preferred choice. Random I/O on traditional
disks is prohibitively expensive, and so any design that minimizes
the amount of random /O outshines the competition. But is this
trade-off still the right one for modern storage devices?

We make the observation that modern NVMe SSDs no longer
suffer the same significant random write drawback as traditional
disks [29]. With enough request parallelism, NVMe SSDs can achieve
their peak sequential write throughput through random writes 29,
39, 56]. This naturally leads us to a research question: how should
a persistent key-value store’s design change for NVMe SSDs where
random wri bl tial writes in

Our hypothesis is that an update-in-place design is the answer
for larger-than-memory workloads that are (i) read-heavy, or (i)
skewed write-heavy. Update-in-place designs, such as a classical
disk-based B+ tree [16, 51, 52], can offer excellent read performance
because each record is stored in a single location on disk—requiring
only one /O to read, if is
performance is desirable because read-heavy workloads such as
caching [8, 45] or analytics [4, 11, 40] are common in practice [10].

While disk-based B+ trees do have these read benefits, they are
also known to suffer from their own challenges. First, updating
a single record on a page requires reading and writing the entire
page, which leads to write amplification. Second, scans can lead
to random reads because logically consecutive leaf pages are not
necessarily stored sequentially on disk; on NVMe SSDs, we observe

reads stil ial reads. Third, inserts
also cause write amplification because of the need to “make space”
in the on-disk structure to hold the new records.

‘Thus, in order to validate our hypothesis, we need to develop a
new design for NVMe SSDs that has the read benefits of a classical
update-in-place design while also mitigating its traditional write

‘hed in memory. High read

github.com/mitdbg/treeline

Paper: tinyurl.com/treeline-paper




Key Takeaways

NVMe SSDs: Parallel random writes = sequential write performance
Opportunity to revisit KVS design

Treeline: Update-in-place with three key ideas
Record caching: Efficient memory use for skewed read/write workloads
Page grouping: Large physical reads for scans, single-page reads for point lookups
Insert forecasting: Proactively "leave space" for inserts

Key results (YCSB throughput)
Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
Up to 10.95x and 7.52x over RocksDB, LeanStore overall

Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

August 31, 2023 TreelLine: An Update-In-Place Key-Value Store for Modern Storage




	Slide Number 1
	The Motivation
	KVSs abound, but not all keys are created equal
	LSM-tree designs optimize for writes
	Update-in-place designs optimize for reads
	The storage landscape has evolved!
	Can we bridge the two design extremes?
	The Innovation
	For skewed point requests, cache records
	For scans, group pages into segments
	For inserts, leave space intelligently
	The Evaluation
	Experimental setup
	Slide Number 14
	Physical I/O and caching drive our wins
	Our key ideas are complementary
	More details in the paper
	Key Takeaways

