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The Motivation
Key-value stores? Skew? Modern SSDs? 

The Motivation
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KVSs abound, but not all keys are created equal
• Varying hotness
• Hotness independent 

of key
• Frequently-updated 

and frequently-read 
keys not necessarily 
the same.

• Updates >> Inserts
• How to handle such a 

workload efficiently?
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LSM-tree designs optimize for writes
• Common: Log-Structured Merge (LSM) tree.

• Basic principles:
• Buffer writes.
• Write to disk when full.
• Periodically “compact” logarithmically.
• Read from memtables or cache; fresher 

versions are in lower-numbered levels.

• ✓ Efficient writes: dump new values into 
memtable and flush periodically.

• ✘ Slow reads and high memory use: multiple 
possible locations for each key.
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Update-in-place designs optimize for reads
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• Update-in-place: Classic B+ trees

•✓ Efficient reads: one physical 
location per key.

•✘ Writes need random I/O: much 
worse than sequential writes in HDDs.

• LSMs more widely used due to this 
random I/O trade-off.
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The storage landscape has evolved!
• NVMe SSDs: Random write 

throughput ≈ sequential write 
throughput at high parallelism

• Sequential reads still better than 
random reads. 
• Speculative pre-fetching.
• Larger random reads 

comparatively better.

Sequential 
writes

Random 
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Sequential 
reads

Random 
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August 31, 2023 TreeLine: An Update-In-Place Key-Value Store for Modern Storage 6



Code: github.com/mitdbg/treeline
Paper: tinyurl.com/treeline-paper

Can we bridge the two design extremes?
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?

This work: Can we make update-in-place designs competitive 
against LSMs on writes, while still excelling at reads?
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The Innovation
How to make an update-in-place design workable

The Motivation
The Innovation
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For skewed point requests, cache records
• Point reads and updates hit cache first.
• LSMs and classic B+ Trees use block 

(page) caches.
• One hot record in each page?

• Key Idea A: use instead a record cache.
• Lower memory amplification.
• Higher I/O amplification (need to write 

out pages)
• Balance in our favor.

Key Idea A: Record Caching
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For scans, group pages into segments
Key Idea B: Page Grouping

• Larger random reads are faster.

• Key Idea B: Page grouping.
• Co-locate pages, forming segments.
• For scans, read the entire segment.
• Navigate within segment using linear 

models.
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For inserts, leave space intelligently
Key Idea C: Insert Forecasting

• One page for a record – what if full?

• How much space to leave?
• Too much: Bad I/O amplification.
• Too little: Must reorganize often.

• Key Idea C: Insert Forecasting.
• Predict inserts using recent sample.
• On reorganization, leave empty space 

based on estimate.
• Make limited use of overflow pages to 

reduce reorganization frequency.
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The Evaluation
So, how well  does this work?

The Motivation
The Innovation
The Evaluation
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Experimental setup
• Hardware:

• 20-core 2.10 GHz Intel Xeon Gold 6230 CPU, 128 GiB of memory
• 1 TB Intel DC P4510 NVMe SSD

• Workload: Yahoo! Cloud Serving Benchmark suite (YCSB)
• Amazon reviews dataset (33 million keys), 33% fits in memory
• Zipfian and uniformly distributed requests

• Baselines:
• RocksDB (LSM)
• LeanStore (Update-in-place)

• Metrics:
• Request throughput
• Physical I/O
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TreeLine shines across the board
• Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
• Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
• Up to 10.95x and 7.52x over RocksDB, LeanStore overall
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Physical I/O and caching drive our wins
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Read much less from disk:
no need to access multiple levels or 
compact them 

Read much less from disk:

physical read throughput is lower
(random I/O) but less data to read. 
 

…on point workloads …on scan workloads

Against RocksDB...

Against LeanStore… Better cache utilization:
cache hot records instead of 
entire pages 

Larger reads, better physical throughput:
page grouping allows for larger physical 
reads in TreeLine. 
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• Record caching and page grouping work in tandem:
• For point workloads (A-D, F), record caching provides most of the benefit.
• For scan-heavy workload E, page grouping doubles the throughput.

• Insert forecasting boosts throughput by reducing reorganizations
• 64B case: Closes more than half of the gap to perfect.
• 512B case: Not enough granularity on 4KiB page. 
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Our key ideas are complementary

50% Insert / 50% Read 
on NYC Taxi Dataset
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More details in the paper
• Implementation details

• Concurrency control
• Durability & recovery

• Additional experiments
• Page grouping effectiveness
• Insert forecasting epoch length

• Discussion
• Possible extensions
• Workload forecasting
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Key Takeaways
• NVMe SSDs: Parallel random writes ≈ sequential write performance

• Opportunity to revisit KVS design

• TreeLine: Update-in-place with three key ideas
• Record caching: Efficient memory use for skewed read/write workloads
• Page grouping: Large physical reads for scans, single-page reads for point lookups
• Insert forecasting: Proactively "leave space" for inserts

• Key results (YCSB throughput)
• Point workloads: 2.20x and 2.07x over RocksDB, LeanStore on average
• Uniform scan-heavy (16 threads): 2.50x and 2.80x over RocksDB, LeanStore
• Up to 10.95x and 7.52x over RocksDB, LeanStore overall
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