

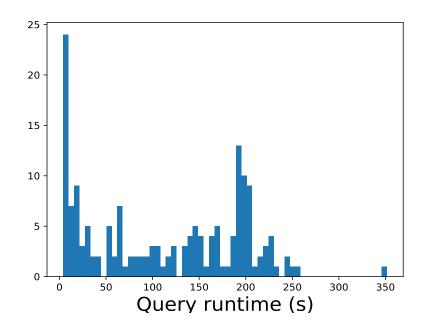
Research 29: Learned Database Systems

Improving DBMS Scheduling Decisions with Accurate Performance Prediction on Concurrent Queries

Ziniu Wu, Markos Markakis, Chunwei Liu, Peter Baile Chen, Balakrishnan Narayanaswamy, Tim Kraska, Samuel Madden

Concurrency impacts latency heavily

- Deciding when to execute a query can be crucial
- Bad scheduling decisions can have a significant impact on query latency.
- Microexperiment:
 - 4 clients issuing closed-loop queries against IMDB dataset on Postgres.
 - Look at runtime of the same query under different concurrent settings.
- Scheduling can have a large impact.

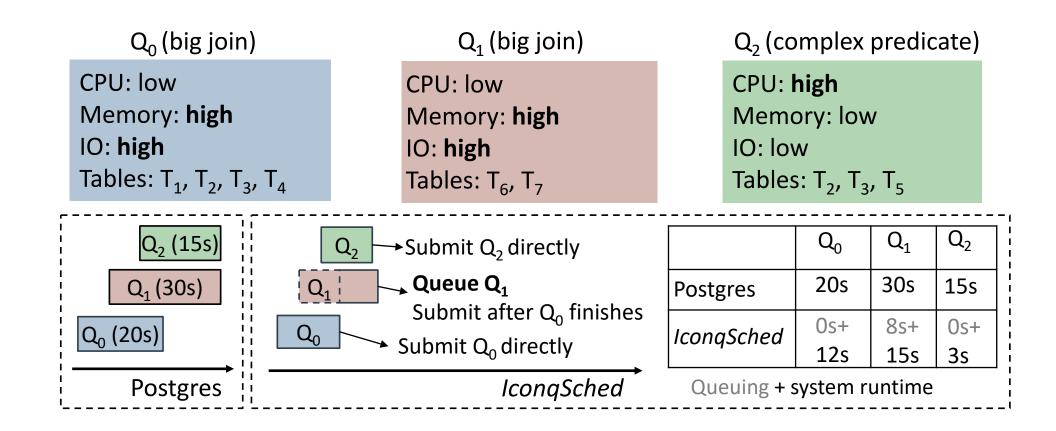


Can we build a reusable scheduler?

- We explore the design of a non-intrusive scheduler:
 - Coarser granularity (e.g. cannot schedule individual operators).
 - But can be applied to any underlying engine.

 Goal: improve query end-to-end time (queueing time + system runtime)

We need to capture resource contention

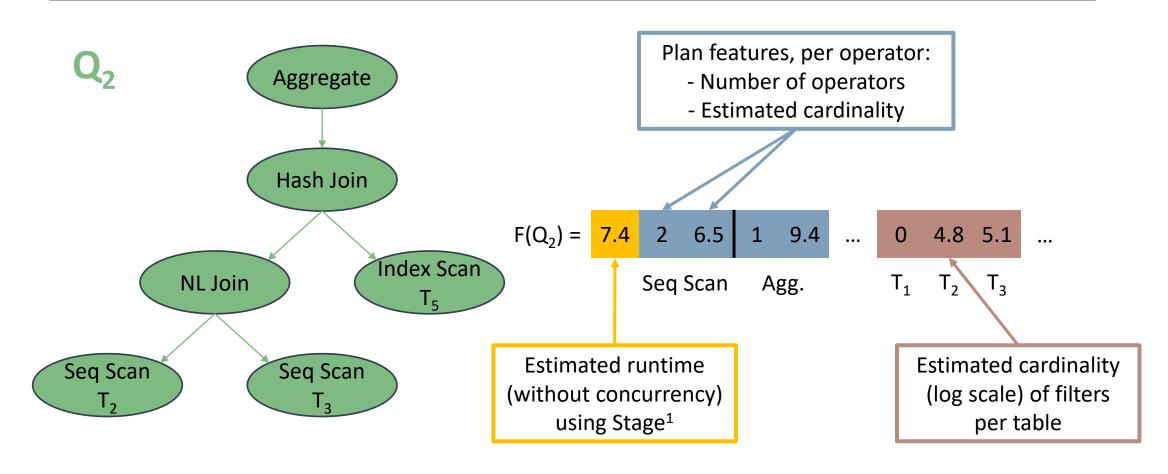


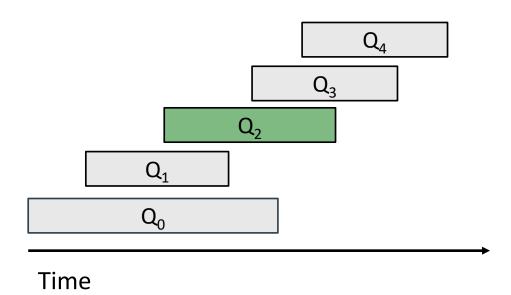
Key challenge: splitting past and future

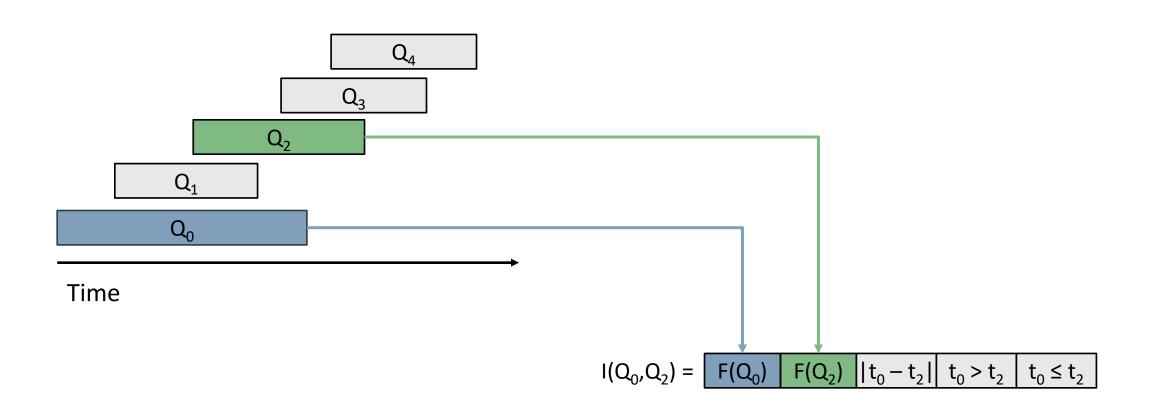
- The latency of each query is affected by both:
 - Queries that were submitted before it and are still running.
 - Queries that are submitted while it is still executing.
- The latter are not available at scheduling time.
- How can we update estimates for running queries as new ones arrive?

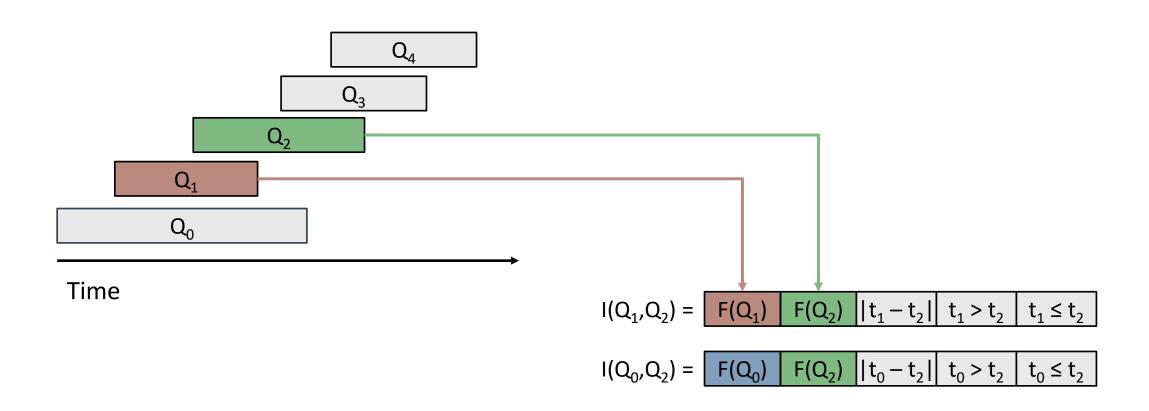
Solution preview: Bidirectional LSTM

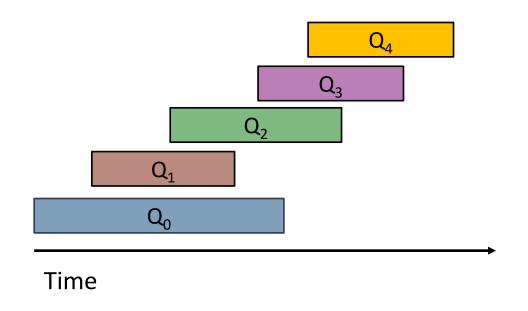
We first featurize a query using its plan











$$I(Q_1,Q_2) = F(Q_4) F(Q_2) |t_4 - t_2| t_4 > t_2 t_4 \le t_2$$

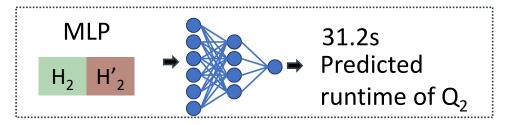
$$I(Q_3,Q_2) = F(Q_3) F(Q_2) |t_3 - t_2| t_3 > t_2 t_3 \le t_2$$

$$I(Q_1,Q_2) = F(Q_1) F(Q_2) |t_1 - t_2| t_1 > t_2 t_2$$

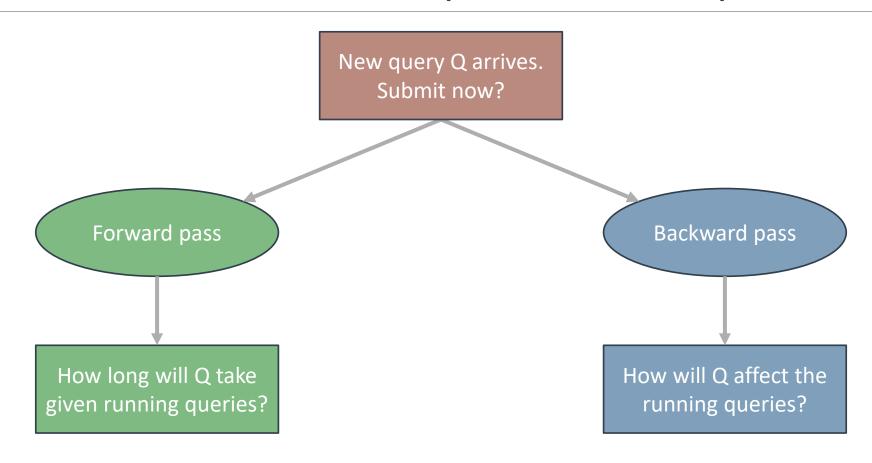
$$I(Q_0, Q_2) = F(Q_0) F(Q_2) |t_0 - t_2| t_0 > t_2 t_0 \le t_2$$

We then train Iconq: a bidirectional LSTM

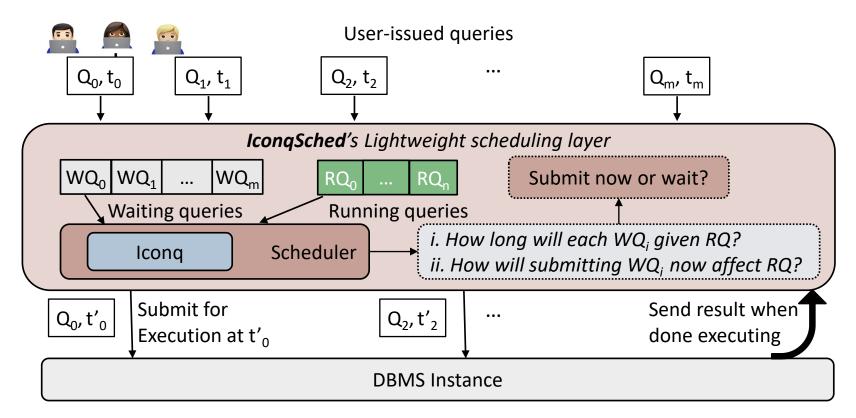




At inference time, separate the passes



Iconq is at the center of our scheduler

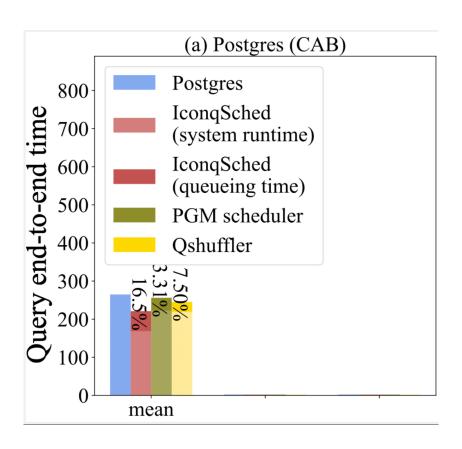


* For short queries
(Stage¹ estimate
< 5s), always submit,
since Iconq requires
around 100ms for
inference

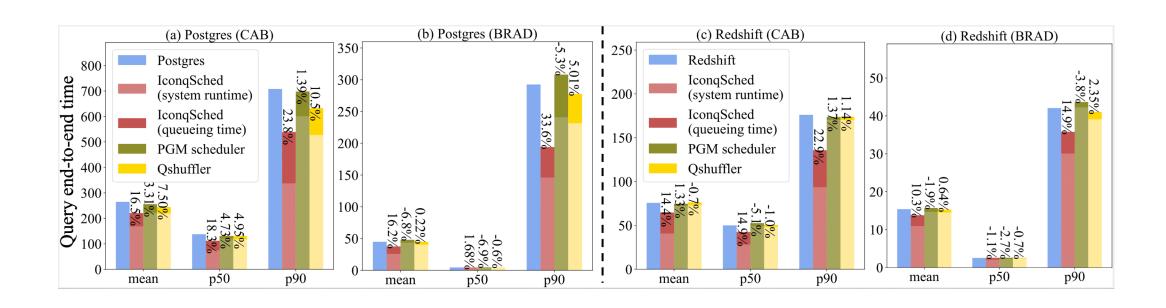
Setting up the evaluation

- Two different DBMS engines:
 - PostgreSQL
 - Amazon Redshift
- Two different open-source benchmarks:
 - CAB¹: Cloud Analytics Benchmark
 - BRAD²: IMDB data + Snowset query arrival timestamps
- Two different state-of-the-art baselines:
 - PGM Scheduler³: Estimate memory and keep total bounded.
 - Qshuffler⁴: Represent system state as counts per query cluster.

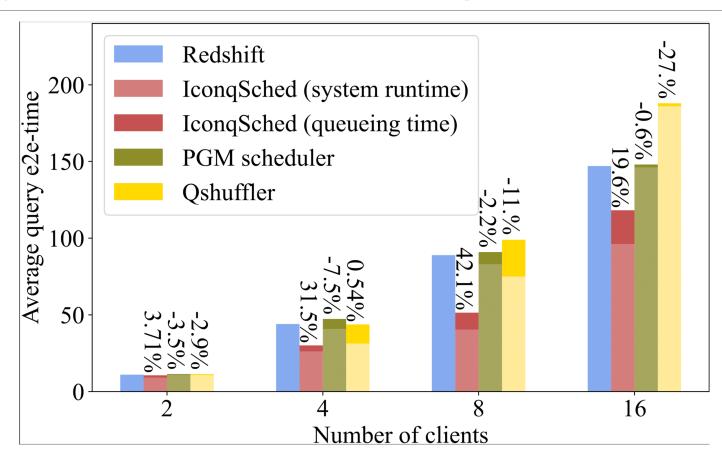
We improve query end-to-end time



We outperform baselines across settings



Iconq performs under high concurrency



Key Takeaway

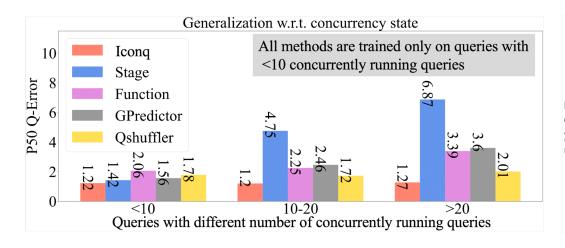
IconqSched reduces
query end-to-end time
without accessing DBMS internals

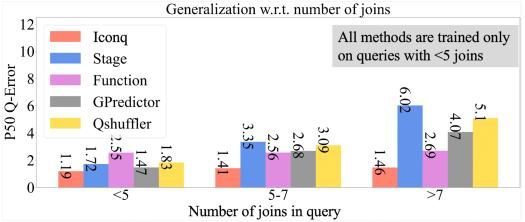
Thank you!

Paper: https://www.vldb.org/pvldb/vol18/p4185-wu.pdf

Questions? Reach out at ziniuw@mit.edu

Iconq generalizes well to harder contexts





$$Q_{\text{error}} = max\left(\frac{true}{pred}, \frac{pred}{true}\right)$$