
Improving DBMS Scheduling Decisions
with Accurate Performance Prediction on
Concurrent Queries
Ziniu Wu, Markos Markakis, Chunwei Liu, Peter Bai le Chen,
Balakrishnan Narayanaswamy, Tim Kraska, Samuel Madden

1

Research 29: Learned Database Systems

Concurrency impacts latency heavily
• Deciding when to execute a query can
be crucial
• Bad scheduling decisions can have a
significant impact on query latency.
• Microexperiment:

• 4 clients issuing closed-loop queries
against IMDB dataset on Postgres.
• Look at runtime of the same query
under different concurrent settings.

• Scheduling can have a large impact.

2

Can we build a reusable scheduler?
• We explore the design of a non-intrusive scheduler:

• Coarser granularity (e.g. cannot schedule individual
operators).
• But can be applied to any underlying engine.

• Goal: improve query end-to-end time (queueing time +
system runtime)

3

Q0 (big join)
CPU: low
Memory: high
IO: high
Tables: T1, T2, T3, T4

Q2 (complex predicate)

CPU: high
Memory: low
IO: low
Tables: T2, T3, T5

CPU: low
Memory: high
IO: high
Tables: T6, T7

Q1 (big join)

Q0 (20s)

Q1
 (30s)

Q2 (15s)

Postgres

Submit Q0 directly

Submit Q2 directly

Q0

Q2

IconqSched

Queue Q1
Submit after Q0 finishes

IconqSched

Postgres

Q0 Q1 Q2

20s 30s 15s

0s+
12s

8s+
15s

0s+
3s

Queuing + system runtime

We need to capture resource contention

Q1

4

Key challenge: splitting past and future
• The latency of each query is affected by both:

• Queries that were submitted before it and are still running.
• Queries that are submitted while it is still executing.

• The latter are not available at scheduling time.

• How can we update estimates for running queries as new ones arrive?

• Solution preview: Bidirectional LSTM

5

We first featurize a query using its plan

Aggregate

Index Scan
T5

NL Join

Hash Join

Seq Scan
T3

Seq Scan
T2

…

Seq Scan

2 6.5

Plan features, per operator:
- Number of operators
- Estimated cardinality

7.4

Estimated runtime
(without concurrency)

using Stage1

F(Q2) = 0 4.8 …5.1

T1 T2 T3

Estimated cardinality
(log scale) of filters

per table

1 9.4

Agg.

6

Q2

[1] Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan, Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and Tim Kraska. 2024.
Stage: Query Execution Time Prediction in Amazon Redshift.

We next add query interaction details

Q0

Q1

Q2

Time

7

Q3

Q4

We next add query interaction details

Q0

Q1

Q2

Time

8

Q3

Q4

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)

We next add query interaction details

Q0

Q1

Q2

Time

9

Q3

Q4

I(Q1,Q2) = F(Q2) |t1 – t2| t1 > t2 t1 ≤ t2F(Q1)

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)

We next add query interaction details

Q0

Q1

Q2

Time

10

Q3

Q4

I(Q1,Q2) = F(Q2) |t1 – t2| t1 > t2 t1 ≤ t2F(Q1)

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)

I(Q1,Q2) = F(Q2) |t4 – t2| t4 > t2 t4 ≤ t2F(Q4)

I(Q3,Q2) = F(Q2) |t3 – t2| t3 > t2 t3 ≤ t2F(Q3)

We then train Iconq: a bidirectional LSTM

11

31.2s
Predicted
runtime of Q2

MLP

Forward
hidden state
initialization

H0 H1

H’2

H2

H’3

Backward
hidden state
initialization

H’3LSTM LSTM LSTM

H2 H’2

At inference time, separate the passes

12

Forward pass Backward pass

How long will Q take
given running queries?

How will Q affect the
running queries?

New query Q arrives.
Submit now?

Iconq is at the center of our scheduler

IconqSched’s Lightweight scheduling layer

Scheduler

User-issued queries

Q0, t0 Q1, t1 Q2, t2 Qm, tm
…

Send result when
done executing

Q0, t’0

DBMS Instance

Q2, t’2
…Submit for

Execution at t’0

Waiting queries
WQ0 WQ1 … WQm

Running queries
RQ0 … RQn

Iconq i. How long will each WQi given RQ?
ii. How will submitting WQi now affect RQ?

Submit now or wait?

13

* For short queries
(Stage1 estimate
< 5s), always submit,
since Iconq requires
around 100ms for
inference

[1] Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan, Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and Tim Kraska. 2024.
Stage: Query Execution Time Prediction in Amazon Redshift.

Setting up the evaluation
• Two different DBMS engines:

• PostgreSQL
• Amazon Redshift

• Two different open-source benchmarks:
• CAB1: Cloud Analytics Benchmark
• BRAD2: IMDB data + Snowset query arrival timestamps

• Two different state-of-the-art baselines:
• PGM Scheduler3: Estimate memory and keep total bounded.
• Qshuffler4: Represent system state as counts per query cluster.

14
[1] Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark.

[2] Geoffrey X. Yu, Ziniu Wu, Ferdi Kossmann, Tianyu Li, Markos Markakis, Amadou Ngom, Samuel Madden, and Tim Kraska. 2024.
 Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRAD.

[3] Abhay Mehta, Chetan Gupta, and Umeshwar Dayal. 2008.
BI batch manager: a system for managing batch workloads on enterprise data-warehouses.

[4] Mumtaz Ahmad, Ashraf Aboulnaga, Shivnath Babu, and Kamesh Munagala. 2011.
Interaction-aware scheduling of report-generation workloads.

We improve query end-to-end time

15

We outperform baselines across settings

16

Iconq performs under high concurrency

17

Key Takeaway

18

IconqSched reduces
query end-to-end time

without accessing DBMS internals

Thank you!

19

Paper: https://www.vldb.org/pvldb/vol18/p4185-wu.pdf

Questions? Reach out at ziniuw@mit.edu

https://www.vldb.org/pvldb/vol18/p4185-wu.pdf
https://www.vldb.org/pvldb/vol18/p4185-wu.pdf
https://www.vldb.org/pvldb/vol18/p4185-wu.pdf

Iconq generalizes well to harder contexts

20

𝑄𝑄error = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

	Improving DBMS Scheduling Decisions �with Accurate Performance Prediction on Concurrent Queries
	Concurrency impacts latency heavily
	Can we build a reusable scheduler?
	We need to capture resource contention
	Key challenge: splitting past and future
	We first featurize a query using its plan
	We next add query interaction details
	We next add query interaction details
	We next add query interaction details
	We next add query interaction details
	We then train Iconq: a bidirectional LSTM
	At inference time, separate the passes
	Iconq is at the center of our scheduler
	Setting up the evaluation
	We improve query end-to-end time
	We outperform baselines across settings
	Iconq performs under high concurrency
	Key Takeaway
	Thank you!
	Iconq generalizes well to harder contexts
	We first featurize a query using its plan

