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Concurrency impacts latency heavily
• Deciding when to execute a query can 
be crucial
• Bad scheduling decisions can have a 
significant impact on query latency.
• Microexperiment:

• 4 clients issuing closed-loop queries 
against IMDB dataset on Postgres.
• Look at runtime of the same query 
under different concurrent settings.

• Scheduling can have a large impact.
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Can we build a reusable scheduler?
• We explore the design of a non-intrusive scheduler:

• Coarser granularity (e.g. cannot schedule individual 
operators).
• But can be applied to any underlying engine.

• Goal: improve query end-to-end time (queueing time + 
system runtime)
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Q0 (big join)
CPU: low
Memory: high
IO: high
Tables: T1, T2, T3, T4

Q2 (complex predicate)

CPU: high
Memory: low
IO: low
Tables: T2, T3, T5

CPU: low
Memory: high
IO: high
Tables: T6, T7

Q1 (big join)
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Q1
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Submit Q0 directly

Submit Q2 directly

Q0
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IconqSched

Queue Q1
Submit after Q0 finishes

IconqSched

Postgres
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Queuing + system runtime

We need to capture resource contention

Q1
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Key challenge: splitting past and future
• The latency of each query is affected by both:

• Queries that were submitted before it and are still running.
• Queries that are submitted while it is still executing.

• The latter are not available at scheduling time.

• How can we update estimates for running queries as new ones arrive?

• Solution preview: Bidirectional LSTM
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We first featurize a query using its plan

Aggregate

Index Scan 
T5

NL Join

Hash Join

Seq Scan
T3

Seq Scan
T2

…

Seq Scan

2 6.5

Plan features, per operator:
- Number of operators
- Estimated cardinality

7.4

Estimated runtime 
(without concurrency) 

using Stage1

F(Q2) = 0 4.8 …5.1

T1 T2 T3

Estimated cardinality 
(log scale) of filters

per table

1 9.4

Agg.
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Stage: Query Execution Time Prediction in Amazon Redshift.



We next add query interaction details

Q0

Q1

Q2

Time
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Q4 



We next add query interaction details

Q0

Q1

Q2

Time
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Q3

Q4 

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)



We next add query interaction details

Q0

Q1

Q2

Time
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Q3

Q4 

I(Q1,Q2) = F(Q2) |t1 – t2| t1 > t2 t1 ≤ t2F(Q1)

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)



We next add query interaction details

Q0

Q1

Q2

Time
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Q3

Q4 

I(Q1,Q2) = F(Q2) |t1 – t2| t1 > t2 t1 ≤ t2F(Q1)

I(Q0,Q2) = F(Q2) |t0 – t2| t0 > t2 t0 ≤ t2F(Q0)

I(Q1,Q2) = F(Q2) |t4 – t2| t4 > t2 t4 ≤ t2F(Q4)

I(Q3,Q2) = F(Q2) |t3 – t2| t3 > t2 t3 ≤ t2F(Q3)



We then train Iconq: a bidirectional LSTM
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At inference time, separate the passes
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Forward pass Backward pass

How long will Q take 
given running queries?

How will Q affect the 
running queries?

New query Q arrives. 
Submit now?



Iconq is at the center of our scheduler

IconqSched’s Lightweight scheduling layer

Scheduler

User-issued queries 

Q0, t0 Q1, t1 Q2, t2 Qm, tm
…

Send result when 
done executing

Q0, t’0

DBMS Instance

Q2, t’2
…Submit for 

Execution at t’0

Waiting queries
WQ0 WQ1 … WQm

Running queries
RQ0 … RQn

Iconq i. How long will each WQi given RQ?
ii. How will submitting WQi  now affect RQ?

Submit now or wait?
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* For short queries 
(Stage1 estimate 
< 5s), always submit,
since Iconq requires 
around 100ms for 
inference

[1] Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan, Pascal Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and Tim Kraska. 2024. 
Stage: Query Execution Time Prediction in Amazon Redshift.



Setting up the evaluation
• Two different DBMS engines:

• PostgreSQL
• Amazon Redshift

• Two different open-source benchmarks:
• CAB1: Cloud Analytics Benchmark
• BRAD2: IMDB data + Snowset query arrival timestamps

• Two different state-of-the-art baselines:
• PGM Scheduler3: Estimate memory and keep total bounded.
• Qshuffler4: Represent system state as counts per query cluster. 
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We improve query end-to-end time
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We outperform baselines across settings
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Iconq performs under high concurrency
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Key Takeaway
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IconqSched reduces 
query end-to-end time

without accessing DBMS internals



Thank you!
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Paper: https://www.vldb.org/pvldb/vol18/p4185-wu.pdf

Questions? Reach out at ziniuw@mit.edu

https://www.vldb.org/pvldb/vol18/p4185-wu.pdf
https://www.vldb.org/pvldb/vol18/p4185-wu.pdf
https://www.vldb.org/pvldb/vol18/p4185-wu.pdf


Iconq generalizes well to harder contexts
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