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How can we go from this to correct 
quantitative conclusions?



Causal inference to the rescue!
• Technical framework for drawing unbiased cause-effect conclusions.

• Ideal setting: run a controlled experiment to sidestep confounding.

• Relationships are expressed through average treatment effects:

𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇,𝑌𝑌 = 𝐸𝐸 𝑌𝑌 𝑑𝑑𝑑𝑑(𝑇𝑇 = 1)]  − 𝐸𝐸[𝑌𝑌|𝑑𝑑𝑑𝑑 𝑇𝑇 = 0 ]

• But logs are observational data – can’t go back and “do”.

• To avoid confounding, we must instead adjust for the right variables.
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What to adjust for? Look at causal graph
• For each variable in the dataset, create a node.

• For each potential direct causal relationship, 
create a directed edge.

• Key property:
• Each node is fully determined by its parents.
• Conditionally independent of everything else.

• Causal discovery: automatically build a causal 
graph from data.
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Applying causal discovery 
over log data is non-trivial
• Functional dependencies 

• The same event creates 
dependent log entries.

• Large number of variables
• Many off-the-shelf algorithms 
scale exponentially.

• Biased data collection
• Failure cases relatively rare, effect 
can be “drowned out”.
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LOGos: a human-in-the-loop approach
• Manually creating a causal graph from a 
set of variables V would require 𝑂𝑂(|𝑉𝑉|2) 
judgments.
• A judgment for outputs whether an edge 
should exist and in which direction.
• Our goal is to solicit judgments in order of 
decreasing impact on the final result.
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Three main components work together
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Log Converter

Candidate Cause 
Ranker

Interactive Causal 
Graph Refiner 

Answering ATE 
queries



We must first obtain log data as a table
• Causal unit: user-defined 
unit of analysis.
• Aggregate variables 
within each causal unit.
• Pick aggregate function 
to maximize empirical 
entropy.
• Intuition: want causal 
units to “look different”.
• More details in paper.
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Session ID Mode work_mem … Mean duration

65495bf0.179a 128 … …

654a3884.49b7 128 … …

… … … ..



LOGos ranks candidate causes to judge
• Specify a target variable 𝑂𝑂 – e.g. mean latency.

• Goal: Find candidate causes of 𝑂𝑂 and solicit 
user judgments about them.

• Intuition: Find the few reliably related variables

• Algorithm sketch:
• Sparsely regress 𝑂𝑂 on the remaining variables 
using LASSO, to find candidate graph parents.
• Compute and sort by pairwise p-values to 
reflect reliability.
• Prompt user for judgments in that order.
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The graph can be refined interactively
• Goal: Which edge edit would most impact 
the ATE of interest? Have the user judge it.
• Intuition: Avoid judging graph edits irrelevant 
to the ATE of interest.
• Algorithm sketch:

• From the current graph, recover the 
adjustment set.
• For each single-variable change to the 
adjustment set, map it to graph edge edits.
• Rank these alternatives by their impact on 
the ATE.
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We evaluate LOGos across log collections
• No open-source log dataset with  labels of what went wrong.

• We construct three datasets to evaluate on:
• PostgreSQL (Real-world): 

• Run TPC-DS for various knob values. 
• Proprietary (Real-world, post-processed):

• Tweak HTTP log from real application to fail with some probability.
• XYZ (Synthetic):

• Synthetic variables X, Y, Z among many, noisy others.
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LOGos finds good candidate causes, fast
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PostgreSQL Proprietary XYZ



Graph refinement reduces # judgments
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PostgreSQL XYZ

V=10 V=100 V=1000



Key Takeaway
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LOGos can help engineers draw 
principled causal conclusions 

from logs faster



Thank you!
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Paper: https://www.vldb.org/pvldb/vol18/p158-markakis.pdf 

Questions? Reach out at markakis@mit.edu
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