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I want 
(at least y% of) 

my queries to finish 
in under x seconds

cheaply
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Workload variability makes latency SLOs hard
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Number of clusters is a “knob” we can affect

• Snowflake-like architectures abstract away many of the 
traditional configuration knobs.

• But allow accessing the same data with multiple compute 
clusters, each with independent computational capabilities. 

• We can safeguard SLOs by isolating incompatible queries.
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Existing work does not cover this adequately

Past Work Has SLOs Multi-Cluster 
Cost Balancing

Models Query 
Interference

Das et al. (2016) ✓ ⮾ ✓

ResTune (2021) ✓ ⮾ ✓

WiseDB (2016) ✓ ✓ ⮾

SLAOrchestrator (2018) ✓ ✓ ⮾

BRAD (2024) ✓ ✓ ⮾

Auto-WLM (2023) ⮾ ~✓ (burst) ~✓ (queueing)

RAIS (2024) ⮾ ~✓ (burst) ~✓ (queueing)
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Single-cluster autotuning

Multi-cluster, but no contention

Real-world, but no explicit SLO

Can we extend our work from BRAD to address this setting?



Problem: Multiple clusters don’t come for free

• At the limit, could we provision a cluster for each query?
• No, because of two related costs:

• [Time] Startup penalty: New clusters takes time and are cold.
• [Money] Per-second billing: Marginal dollar cost is zero on active cluster.
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The Problem

Our Design

Evaluation
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Ongoing work!



We design a practical solution based on the 
state-of-the-art
Key Challenge Base technique Making it practical
Modeling query 
interference

Iconq [1] Consider cluster size, 
deal with execution-
dependent overlaps

Selecting clusters to 
provision

Two-phase greedy 
packing

Add query interactions and 
cloud billing peculiarities

Dealing with online 
uncertainty

Decision tree model Distill context-dependent 
decisions of expensive model
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[1] Ziniu Wu, Markos Markakis, Chunwei Liu, Peter Baile Chen, Balakrishnan Narayanaswamy, Tim Kraska, and Samuel Madden. 2025. Improving DBMS 
Scheduling Decisions with Accurate Performance Prediction on Concurrent Queries. Proc. VLDB Endow. 18, 11 (July 2025), 4185–4198. 
https://doi.org/10.14778/3749646.3749686



First objective: Meet the SLO on forecast
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First objective: Meet the SLO on forecast
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First objective: Meet the SLO on forecast
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Second objective: reduce cost
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Second objective: reduce cost
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• Pre-load C1, C3

• Train XGBoost router

Could also use the latency 
model online, but slower

Not incurring cost yet



Our online phase makes decisions adaptively
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Our online phase makes decisions adaptively
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Our online phase makes decisions adaptively
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The Problem

Our Design

Evaluation
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We base our evaluation on TPC-DS chunks

• Benchmark TPC-DS templates in isolation on Redshift serverless 
clusters with 4, 8, …, 256 RPU

• Identify 15 heavy templates: latency >2s on every size.

• Define 16 one-hour workload chunks:
• Heavy queries: 0%, 10%, 25%, 50%
• Mean interarrival time: 10s, 30s, 60s, 120s

• Run each chunk on 4, 8, 16, 32 RPU -> 64 traces
• Result cache disabled.
• Hold out 12 for validation and 12 for testing.
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Our predictor generalizes well across chunks

We benchmark at 
percentiles of the 
Q-error:

 𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

, 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

)
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Case study on one of the chunks
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Our routing plans meet the SLO cheaply

• Use 180s SLO for 119 queries.
• Use the selector to determine 

a cluster set and routing 
model.

• Re-execute and measure SLO 
violation rate and cost.

• Lower is better on both 
metrics.
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Cost vs All 32 SLO Violation vs All 16

Ours (Exact) 2.54x lower 4.94x lower



An interesting failure mode can emerge

• In Iconq, predictions rely on 
the overlapping query set

• Online, easy to determine: 
what is still running?

• Offline, we can enter an error 
feedback loop if not careful.

• Quick fix: later can never 
speed earlier up

• Better: model “nearness” 
without overlap?
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We are exploring three future directions

Better latency model

Can we learn influence 
of “nearby” queries 
while avoiding 
conditioning on 
execution overlap?

Probabilistic outputs

Instead of the exact 
latency, can we do 
better by learning the 
probability of it 
exceeding the SLO?
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Purely online setting

By modeling startup 
time, can we handle 
cluster additions and 
deletions purely 
online?



Conclusions

• Separate compute clusters can be used to avoid SLO violations.
• Cost- and interference-aware routing is a promising path.
• Current models of query interference show interesting problems.
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Questions? Ideas? Reach out at markakis@mit.edu
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