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Workload variability makes latency SLOs hard
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Snowflake-like architectures abstract away many of the
traditional configuration knobs.

But allow accessing the same data with multiple compute
clusters, each with independent computational capabilities.

We can safeguard SLOs by isolating incompatible queries.
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. . Das et al. (2016) v ® v
Single-cluster autotuning
ResTune (2021) v ® v
WiseDB (2016) v v ®
Multi-cluster, but no contention SLAOrchestrator (2018) v v ®
BRAD (2024) v v ®
o Auto-WLM (2023) ® ~v (burst) ~v/ (queueing)
Real-world, but no explicit SLO
RAIS (2024) ® ~v (burst) ~v (queueing)

Can we extend our work from BRAD to address this setting?



* At the limit, could we provision a cluster for each query?

* No, because of two related costs:
* [Time] Startup penalty: New clusters takes time and are cold.
* [Money] Per-second billing: Marginal dollar cost is zero on active cluster.
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The Problem

Our Design
Ongoing work!

Evaluation



Modeling query
interference

Selecting clusters to
provision

Dealing with online
uncertainty

lconq [1]

Two-phase greedy
packing

Decision tree model

Consider cluster size,
deal with execution-
dependent overlaps

Add query interactions and
cloud billing peculiarities

Distill context-dependent
decisions of expensive model

[1] Ziniu Wu, Markos Markakis, Chunwei Liu, Peter Baile Chen, Balakrishnan Narayanaswamy, Tim Kraska, and Samuel Madden. 2025. Improving DBMS
Scheduling Decisions with Accurate Performance Prediction on Concurrent Queries. Proc. VLDB Endow. 18, 11 (July 2025), 4185-4198.

https://doi.org/10.14778/3749646.3749686



First objective: Meet the SLO on forecast
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First objective: Meet the SLO on forecast
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First objective: Meet the SLO on forecast
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Second objective: reduce cost

C2, Size 32 o
C3, Size 16 Q] }

om O, e
C1,Size 8 - Q|

o

Time

12



Second objective: reduce cost

v

: Notincurring cost yet
C3, Size 16 -

e Pre-load C1, C3

)
C1,Size 8 - - * Train XGBoost router ?

> Could also use the latency
Time model online, but slower
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Our online phase makes decisions adaptively
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Our online phase makes decisions adaptively
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Our online phase makes decisions adaptively
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The Problem

Our Design

Evaluation



* Benchmark TPC-DS templates in isolation on Redshift serverless
clusters with 4, 8, ..., 256 RPU

* |[dentify 15 heavy templates: latency >2s on every size.

 Define 16 one-hour workload chunks:
* Heavy queries: 0%, 10%, 25%, 50%
* Mean interarrival time: 10s, 30s, 60s, 120s

* Run each chunkon 4, 8, 16, 32 RPU -> 64 traces

* Result cache disabled.
* Hold out 12 for validation and 12 for testing.
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Our predictor generalizes well across chunks

0 Train
We benchmark at 601w val c 27 5 4880
percentiles of the so
Q-error: .
utJ 4.0
&
3.0;
Ypred
max(ZVtrue ’ pre ) i
Ypred Ytrue ' 1.47 1.39 1.42
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Case study on one of the chunks

Cumulative SLO Violation Time: 23518 55 - Cost: $4.79)

Cluster Query Assignments Over Time
Workload: tpods_98templates_25pctheavy_30meaninterarrivals | SLO: 180.00s
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25% Heavy, Mean T=30s

* Use 180s SLO for 119 queries. &, . All on 4 RPU
a8 i All on 8 RPU
* Use the selector to determine - All on 16 RPU
a cluster set and routing S ® Allon 32 RPU
J Ours (Exact)
model. 5100
0 10°10%'10%10310%10°
e Re-execute and measure SLO SLO Violation Time (Seconds)

violation rate and cost.

_ Costvs All32 | SLO Violation vs All 16

Ours (Exact) 2.54x lower 4.94x lower

e L ower is better on both
metrics.
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* In lconq, predictions rely on
the overlapping query set

* Online, easy to determine:
what is still running?

 Offline, we can enter an error
feedback loop if not careful.

* Quick fix: later can never
speed earlier up

e Better: model “nearness”
without overlap?

Q,
Q,
Time
Overlaps(Q,) ={}
Q,
Q,

Overlaps(Q,) ={Q,}

Time

22



Better latency model

Can we learn influence
of “nearby” queries
while avoiding
conditioning on
execution overlap?

Purely online setting

By modeling startup
time, can we handle
cluster additions and
deletions purely
online?

Probabilistic outputs

Instead of the exact
latency, can we do
better by learning the
probability of it
exceeding the SLO?
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* Separate compute clusters can be used to avoid SLO violations.
* Cost- and interference-aware routing is a promising path.

* Current models of query interference show interesting problems.

markakis@mit.edu
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